12 – Early Quality-of-Service Analysis of the Alternatives

- Design of service plans
- Early understanding of the alternatives
- Better communications with FTA
Motivations

• Experience over the past four years
 – Limited insights from review of service plans for the alternatives
 – Real insights from analytical reporting of forecasts – thematic maps, D-D tables
 – So, FTA does not “approve” alternatives – especially the TSM alternative – based on early definitions
Motivations

• Early discussion still important
 – Sponsors want reassurance
 – FTA wants to avoid late disagreements

• Early analysis of service plans is highly desirable
 – Enough to understand service implications
 – And to permit agreement on the strategic service plan for each alternative
Principles for Alternatives Design

- Address purpose and need
- Include baseline options
- Include all reasonable modes and alignments
- Encompass an appropriate range of options without major gaps in costs
- Include:
 - Alternatives addressing different goals
 - Alternatives have a reasonable chance of becoming the locally preferred alternative (LPA)
Principles for Alternatives Design

Since all alternatives should address the same purpose and need:

All alternatives should strive to provide enhanced quality of service to the same markets
Alternatives Definition

- Three stages
 - Conceptual
 - Detailed
 - Final
- Each describes with increasing detail
 - Technology
 - Alignment
 - Operating Plan
Conceptual Alternatives

- Operating plans are strategic; for example:
 - LRT with park-ride
 - Express buses on separate guideway with stations
 - Express bus on freeway; park-ride but no stations
 - Limited stop service on arterial + signal preemption
 - High frequency local service

- FTA wants to talk about the concepts and the strategic service plans
Detailed Alternatives

• Operating plans sufficient to support network coding and O&M cost analysis
Final Alternatives

• Reflects analysis and refinement of detailed alternatives to demonstrate:
 – Responsiveness to purpose and need
 – Consistency with markets served by the build alternative
 – Cost-effective relative to the no-build

• Baseline
 – Approved by FTA only after project sponsor completes detailed analysis
Quality of Service Analysis

- Systematic approach to understanding how each alternative serves the intended markets
- Review of route maps and tables of frequencies for consistency is important, but not sufficient
- Need to understand the interaction between the travel model and the service plan
Some Basic Issues

- Route structure
- Span of service (days and hours)
- Fare structure
- Park-ride locations, capacities and access
An Approach to QOS Analysis

• Develop networks early in the analysis
 – For both Build and possible Baseline alternatives

• Use your travel models
 – Networks and pathbuilder, at least
 – And mode choice?
 – And user-benefits calculations?
Early QOS Analysis

Urbanville

- >5 mins worse
- <5 mins worse
- 0 mins
- 1 to 5 mins
- 6 to 10 mins
- 11 to 15 mins
- 15+ mins

5 miles

June 2006
An Approach to QOS Analysis (continued)

- Develop some type of forecast year transit trip table
 - From previous analysis
 - From model application for one network
 - Use person trip table if nothing else available

- Use the tools you have to examine
 - Trip table differences
 - Skim table differences
 - Summit can assist but is not required at this stage

- Use GIS to assist in analysis
An Approach to QOS Analysis (continued)

• Examine differences in:
 – Coverage
 – Fares
 – Travel time (weighted and unweighted)
 – Park-ride service areas
 – Number of transfers
An Approach to QOS Analysis (continued)

- Look for:
 - Areas where service is reduced in a proposed TSM alternative compared to the No-Build
 - Areas where service is reduced in the Build alternative compared to a TSM alternative
 - Significant changes in the QOS for markets not directly served by the proposed project
Barriers?

- How much of this is being done early?
- If not much, what prevents it?
 - Working on models?
 - Operating plans not really defined?
 - Holding information closely?
- How about early application of full models to get previews?
- Anything that FTA should do?
13 – Dealing with Uncertainties in New Starts Forecasts

• Related New Starts requirements
• A framework
• Framing uncertainties in forecasts
Related Requirements

- FTA ratings: to consider reliability of numbers
- Analysis of uncertainty: to support ratings
- Before-After studies: to improve understanding and tools
- FFGA Bonus Awards: to provide incentives
- Performance Tracking: to promote good practice
A Framework for Dealing with Uncertainty and Accuracy in Forecasts for New Starts Projects
Uncertainty Analysis

• Potentially a central role
• Lessons from colleagues?
 – Weather forecasters
 – Travel forecasters
Uncertainty Analysis

• An approach?
 – "Forecast" of current conditions and travel patterns

 What things must happen to get us from here to there?

 Performance of project
 Growth
 Highway congestion
 Parking prices
 Fares
 Etc., etc., etc.

 – Forecast of future conditions, travel patterns, and performance of a New Starts project
Framing Uncertainties

• Stepwise build-up of forecasts
 – Today
 – Plus the future transit network
 – Plus future trip tables
 – Plus future highway congestion
 – Plus future parking costs

• Isolation of contributions to full forecast
Framing Uncertainties

• Assignment of probabilities to increments
 – Upper and lower bound?
 – Probability distribution?
 – Specific discussion of individual sources of uncertainty

• Range of possible outcomes
 – Separate forecasts (upper, lower, best-guess)?
 – Monte-Carlo → frequency distribution?
Questions

• How desirable is a redefined meaning to the term “forecast?”
• How possible is it to achieve, at least for the locally preferred alternative?
• What are the barriers?
14 – Tracking the Accuracy of Transit Forecasts

- The requirement
- Principles
- Implementation
Requirement

• SAFETEA-LU
 – Track performance of contractors in making reliable forecasts of costs and ridership
 – Account for the various sources of errors in the forecasts
A Framework for Dealing with Uncertainty and Accuracy in Forecasts for New Starts Projects
Principles

• Accountability appropriate generally
 – Contractors producing travel forecasts
 – Others producing travel forecasts
 – Project sponsors managing technical work
 – Project sponsors defining context
 – MPOs maintaining forecasting capabilities
 – MPOs making demographic forecasts

• So, track all participants
Principles

• Incentives for good practice
 – Current project ratings affected by:
 • Performance on previous projects
 • Current efforts (data collection, model upgrades, peer reviews, etc.)
 – Performance evaluation based on broadened definition of a “forecast”
Principles

• Performance
 – High score: Actual ridership ~ predicted ridership
 • For the right reasons?
 • Impact of offsetting errors?
 – Good score: Actual ridership < predicted ridership
 • Cause(s) documented in uncertainty analysis
 • Magnitude of impact ~ documented range
 – Bad score: Actual ridership < predicted ridership
 • Uncertainty analysis silent on cause(s)
 • Or characterized causes as very unlikely
Questions

• General approach useful?
• Appropriate implementation?
15 – Properties of Travel Models for New Starts Forecasting

- General requirements
- Specific issues
Topics

• General requirements
 – Calibration and validation (next session)
 – Ability to support coherent case for project

• Specific issues
Problematic Characteristics of Transit Forecasting Methods

- Unusual coefficients in mode choice models
- Non-logit decision rules
- Bizarre alternative-specific constants
- Alt-specific constants for “new New Starts”
- Path / mode-choice inconsistencies
- Accuracy of bus running times
- Stability of highway-assignment results
Unusual Coefficients

• IVT coefficients for HBW trips
 – Most models: -0.030 < Civt < -0.020
 – Variations: -0.045 < Civt < -0.007
 – Concern: Is this a reflection of behavior?
 – FTA caution: some further analysis appropriate if Civt < -0.03 or Civt > -0.02

• IVTTT coefficients for non-work trips
 – Civt for HNB trips ~ Civt for HBW trips
 – Civt for HBO trips ~ 0.1 to 0.5 x Civt HBW trips
Unusual Coefficients

- Large Covt/Civt ratios
 - Most models: $2.0 < \text{Covt/Civt} < 3.0$
 - Variations: Covt/Civt as low as 0.25! as high as 16!
 - Concern: different ridership gain and user benefits per minute of OVT
 - Concern: behavior or estimation error or distortion?
 - FTA requirements: compelling evidence if $2.0 < \text{Covt/Civt} < 3.0$
Unusual Coefficients

- Wide variations in LogSum coefficients
 - Problem
 - $0.7 < C_{\text{LogSum}} < 1.0 \approx \text{multinomial logit}$
 - Many models with “asserted” (not estimated) C_{LogSum}
 - Concern: overstated impacts on new transit trips & benefits(?)
Non-Logit Decision Rules

- “Thresholds” and “cliffs”
- Rules invented to improve reasonableness of forecasts
- Have random and sometimes extremely undesirable (+ or -) impacts on ridership and user benefits
Non-Logit Decision Rules

• Example 1:
 – Rule: 3 minute IVT minimum on transit
 – Motivation: eliminate very short transit trips
 – Undesirable impact: If project reduces transit time for an important interchange from 4 minutes to 2.9 minutes in CBD:
 • Transit share may drop from 25% to 0%
 • Potentially large negative benefits
Non-Logit Decision Rules

• Example 2:
 – Rule: For drive-access trips, transit IVT must be greater than drive access time
 – Motivation: Eliminate unlikely drive access transit trips
 – Undesirable impact: If project adds attractive close-in parking lot, rule may be violated
 • Transit share may drop to 0%
 • Potentially large negative benefits
Non-Logit Decision Rules

- Example 3:
 - Inconsistent access-coding rules across transit modes – guideways vs. local buses
 - Differences between alternatives caused solely by differences in access limitations
Non-Logit Decision Rules

• Conclusions:
 – Use continuous functions in disutility equation rather than 0/1 tests
 – Same relationships in path builders
 – Accept some degree of model inaccuracy in lieu of over-defined model process
 – Consider how models will react in forecasting differences between alternatives
Bizarre

Alternative-Specific Constants

• Problem
 – Naïve calibration \rightarrow bad constants
 – Bad constants \rightarrow large bogus utility changes
 – Bogus delta utilities \rightarrow errors in trips & benefits
Bizarre Alternative-Specific Constants

A test for dominance of trip-table errors over behavioral content of alternative-specific constants... Is the pattern explainable?

\[K_{\text{transit equiv mins}} \]

\begin{align*}
\text{Income class} & \quad 1 & 2 & 3 & 4 \\
\text{Plausible} & \quad & & & \\
\text{Implausible} & \quad & & &
\end{align*}
Bizarre Alternative-Specific Constants

– Better calibration strategy: less “precision”?
 • Class-specific targets only for mode & access choices
 • Aggregate targets for transit line-haul choice

– Practical advantages
 • Line-haul target-shares do not have to be correct
 • Bizarre line-haul constants less likely

– Behavioral improvement?
 • Avoids implication that different classes value differently the unincluded attributes of line-haul choices
 • Resulting errors in line-haul-by-class highlight likely distortions in person-trip tables by class
“New” New Starts

• Transit constants for “new” New Starts
 – Some current systems inadequate to support calibration of constants representing:
 • “full” TSM (drive access)
 • “build” alternatives (guideways)
 – Difficulties with two common approaches
 • Borrowing constants from other urban models
 • Stated preference methods
 – Some insights from the AARF/CTPP model
 – Best handled as source of uncertainty?
Path / Mode-Choice Consistency

• Conformance between parameters in:
 – Transit path selection
 – Mode choice utility expressions for transit choices

• Consequences of disagreement
 – “Better” paths may look worse to mode choice
 – Build alternatives may lose some trips and benefits
Networks and Speeds

• Level-of service estimates must:
 – Replicate current conditions reasonably well
 – Predict defensible deltas: today vs. future
 – Predict defensible deltas: across alternatives

• Potential problems
 – Highway & bus link speeds → <2 mph
 – Imbalance between development and arterial capacity
Summary: Requirements

• Models are tools to provide insights
• Performance requirement
 – Provide basis for coherent statements
 – Usefulness, not perfection
16 – Calibration and Validation

- New Starts “standards”
- Meaningful calibration
- Useful validation
FTA Standards

• Reasons for travel forecasts
 – Insights into problems and alternatives
 – Information for decisionmaking

• Performance requirements for models
 – Ability to support a coherent story
 – Absences of fatal flaws
 – Usefulness, but not perfection
FTA Standards

• Evidence of a useful model set
 – Previewed in its specifications
 – Revealed by its forecasts (today, future)
 – Judged by the coherence of insights, story

• Elements of the story
 – Current and future (No-Build) conditions
 – Performance of the alternatives
 – Sources of transportation benefits
FTA Standards

• Traditional model development
 – **Estimation** of “behavioral” model parameters
 – **Calibration** of model adjustments
 – **Validation** of model forecasts vs. “today”
Calibration and Validation

Traditional model development

Potential problems

-- too much effort on estimation; not enough on calibration, validation
-- insufficient data on important travel behaviors
-- calibration factoring and rules, rather than real corrections
-- inattention to properties of “calibrated” models
-- forecasting started too late to inform calibration
Calibration

- Data
 - Highway travel times
 - Transit travel times
 - CTPP 2000
 - Transit rider survey (controlled sample)
 - Household diary survey
- Calibration should exhaust the data sources
Calibration

- Highway speeds
- Travel-pattern models
 - Trip ends by sub-area
 - Trip tables (sub-area to sub-area, by class)
- Calibration of transit-specific models
 - Transit link speeds
 - Transit pathbuilding *(assignment of survey data!)*
 - Transit-mode choice
 - Transit volumes – lines, stations, and lots
Validation

- Coherence of travel behaviors implied by the model
- Reasonableness of predicted changes
 - Between today and the future
 - Between base and build alternatives
Documentation

• Calibration
 – Description of key current transit markets
 – Demonstration of model understanding
 – Discussion of limitations in forecasting
 – Unobserved behaviors
 – Effects embedded in constants, K-factors

• Validation
 – Coherence of model properties
 – Reasonableness of predicted changes
FTA “Standards”

• Implications for New Starts
 – Early discussion of specifications → less chance of later problems
 – Better calibration/validation → better support for unusual characteristics in forecasts
 – Weaker calibration/validation → less latitude in FTA acceptance of forecasts
17 – Methods for Transit Data Collection

- Motivations
- Scope
- Approaches
Motivations

• Understanding of current role of transit
 – Major functions, markets
 – Context, part of making the case
• Informing travel models about transit
 – Models’ grasp of the major functions
 – Basis for ability to make useful forecasts
• Proposed regulatory requirement
• FTA-provided contractor assistance
Scope

- Relevant markets and transit services
- Sample size and distribution
- Sample control and expansion
- Necessary data items
Scope – Markets & Services

- Relevant markets and transit services
 - Nominally system-wide
 - Targeted corridors
 - Outlying commuter markets
 - CBD circulation markets
Scope – Sample Size

- Sample size and distribution
 - Less emphasis on line-level statistics
 - More attention to important travel markets
 - Sufficient sample to support tabulations by:
 - Geography: district-to-district flows
 - Socio-economic characteristic(s)
 - Transit line-haul modes
 - Access modes
Scope – Sample Control

• Sample control and expansion
 – Sampling plan
 • Dealing with sampling error
 • Controlling for non-response biases
 – Counts!
 • Stations
 • Access modes
 • Automated sources
Scope – Data Items

<table>
<thead>
<tr>
<th>Necessary data items</th>
<th>Optional data items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip origin and destination (O&D)</td>
<td>First boarding (on) location</td>
</tr>
<tr>
<td>Activity purposes at the origin & destination</td>
<td>Last alighting (off) location</td>
</tr>
<tr>
<td>Trip access and egress modes (O&D)</td>
<td>Fare payment method</td>
</tr>
<tr>
<td>Park/ride location</td>
<td>Frequency of transit use</td>
</tr>
<tr>
<td>All transit lines used for the trip</td>
<td>Other household characteristics</td>
</tr>
<tr>
<td>Driver’s license (or ability to drive)</td>
<td>Other personal characteristics</td>
</tr>
<tr>
<td>Household vehicles</td>
<td>Satisfaction with service</td>
</tr>
<tr>
<td>Household workers</td>
<td></td>
</tr>
</tbody>
</table>

----- subject to revision -----

June 2006
Approaches

- **Surveys of Riders**
 - On-board
 - At stop
 - Park-ride lots

- **Counts**
 - Boardings
 - Parking lot occupancy

- **Other**
 - On-time performance
 - Financial
 - Fare-box data
Surveys of Riders

- Information to be gathered
 - Rider characteristics
 - Characteristics of rider’s household
 - Trip characteristics
 - Purpose
 - Origin/destination
 - Modes of access/egress
 - Frequency of trip
On-board Surveys

- Must be coordinated with counts to permit expansion
- Self-administered
 - Response bias
 - Incorrect information
 - Largest sample (distributed, maybe not returned)
- Interviews
 - Smaller sample
 - Difficulty with short trips
 - More accurate information
Approaches to dealing with multiple trip problem

- Surveying travel in only one direction (e.g. inbound)
- Surveying travel only during a portion of the day (e.g. start-of-service until 2 PM) and assuming travel symmetry
- Asking riders if they were previously surveyed or if they will make a return trip.
- Asking riders to complete a survey on all trips and trip segments.
At-stop Surveys

- Consider for projects with “stations”
- Requires interviewers
Park-ride Lots

- Windshield mail-back
- Interviews
Counts

- Boardings by stop or station
- Departures by stop or station
- Persons on-board by link or segment
- Vehicles in parking lots
Other Data Types and Sources

- On-time performance
 - Of interest for certain types of projects (e.g. BRT)
 - AVL systems may be used if available
- Financial data
 - Revenues achieved
- Farebox data
 - Boardings by payment type (buses)
 - Boardings by day of week and time of day
Information to Be Gathered

• Definition of markets
 – Who is riding and for what purposes?
• Analysis of travel demand models
 – Identify independent variables in models
 – Collect these data
18 – Preservation and Analysis of New Starts Travel Forecasts

- Motivations and objectives
- Preservation
- Before-After / Predicted-Actual Studies
Motivations

• Before-After Studies
 – Required since the 2001 New Starts rule
 – Include comparison of forecasts with actuals
• Tracking of “contractor” performance
 – SAFETEA-LU
 – Includes identification of sources of error
• FTA Predicted-Actual study: few records!
Preservation

- Milestones
 - Entry into preliminary engineering
 - Entry into final design (and FFGA?)
- Forecasts for build & baseline alternatives
- Preservation of insights
 - Dangers of postponing analysis until “after”
 - So, analysis of changes at milestones
Preservation

• Possible approaches
 – Preserve the numbers only
 • Save files (zone attributes, trip tables, etc.)
 • Rely on forensics to understand changes, errors
 • Challenges in allocating causes of errors
 – Preserve ability to recreate the forecasts
 • Networks, models, reporting tools
 • Much better platform for isolating causes
 • Challenges with software, hardware, zones, etc.
Preservation

• Providing continuity
 – Project sponsors responsible for B&A study
 – Consultants or MPO often prepare the forecasts
• Preservation as a wrap-up task in forecasting
• Active FTA role in preservation
 – Back-up plan for sponsor & contractor archives
 – FTA contractor: obtain, test, and archive
 • Ability to replicate forecasts
 • Analysis of changes in forecasts since previous milestone
Implementation

• Before-After Studies
 – Since 2001

• Preservation and analysis at milestones
 – 2006 “Policy Guidance”

• Applicability
 – Projects without FFGAs by guidance date
 – Projects entering PE after guidance date
Barriers?

- Challenges?
 - Software and hardware?
 - Changes in zone systems?
 - Others?

- What should FTA be doing to help?